Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 80
Filter
1.
Mol Plant ; 2024 May 07.
Article in English | MEDLINE | ID: mdl-38720462

ABSTRACT

N6-methyladenosine (m6A) is one of the most abundant modifications in eukaryotic mRNA, but the comprehensive biological functionality continues to be a subject for exploration. In this study, we identified and characterized a new flowering-promoting gene EARLY HEADING DATE6 (EHD6) in rice. EHD6 encodes an RNA recognition motif (RRM)-containing RNA binding protein that is localized in the non-membranous cytoplasm ribonucleoprotein (RNP) granules and can bind both m6A-modified RNA and unmodified RNA indiscriminately. We found that EHD6 can physically interact with YTH07, a YTH (YT521-B homology) domain containing m6A reader, and their interaction enhances the binding of m6A-modified RNA and triggers relocation of a part of YTH07 from the cytoplasm into RNP granules through phase-separated condensation. Within these condensates, the mRNA of a rice flowering repressor, CONSTANS-like 4 (OsCOL4), becomes sequestered, leading to a reduction in its protein abundance and thus affect flowering through the Early heading date 1 pathway. Our results not only shed new light on the molecular mechanism of efficient m6A recognition by the collaboration between the RNA binding protein and YTH family m6A reader, but also uncovers a potential m6A mediated translation regulation through phase-separated ribonucleoprotein condensation in rice.

2.
Reproduction ; 167(6)2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38520750

ABSTRACT

In brief: Brown adipose tissue impaired in polycystic ovary syndrome (PCOS) plays a crucial role in the treatment of PCOS. This study shows that myricetin potently improves PCOS by activating brown adipose tissue (BAT). Abstract: PCOS is a complex endocrine disease characterized by hyperandrogenism, anovulation and polycystic ovary, and is often accompanied by metabolic disorder such as insulin resistance. BAT has been considered as a promising target for the treatment of obesity and other metabolic disease. In this study, we showed that 3 weeks of myricetin (a compound from natural product) treatment improved metabolic capacity and insulin sensitivity by activating BAT in dehydroepiandrosterone (DHEA)-induced PCOS mice. Furthermore, increased number of corpus luteum and decreased cystic formation were observed in PCOS mice. With the hormone levels such as luteinizing hormone (LH) were reversed, estrous cycle was also normalized after myricetin treatment. Eventually, myricetin markedly improved reproductive defects in PCOS mice. In short, our results suggest that myricetin treatment dramatically ameliorates ovarian dysfunction and metabolic disturbances in PCOS and provides a novel perspective for the treatment of PCOS.


Subject(s)
Adipose Tissue, Brown , Flavonoids , Insulin Resistance , Polycystic Ovary Syndrome , Polycystic Ovary Syndrome/drug therapy , Polycystic Ovary Syndrome/metabolism , Polycystic Ovary Syndrome/chemically induced , Polycystic Ovary Syndrome/pathology , Animals , Female , Flavonoids/pharmacology , Flavonoids/therapeutic use , Adipose Tissue, Brown/drug effects , Adipose Tissue, Brown/metabolism , Mice , Mice, Inbred C57BL
3.
Stroke ; 55(5): 1261-1270, 2024 May.
Article in English | MEDLINE | ID: mdl-38511332

ABSTRACT

BACKGROUND: Mitochondrial DNA copy number (mtDNA-CN) is associated with the severity and mortality in patients with stroke, but the associations in different stroke subtypes remain unexplored. METHODS: We conducted an observational prospective cohort analysis on patients with ischemic stroke or transient ischemic attack enrolled in the Third China National Stroke Registry. We applied logistic models to assess the association of mtDNA-CN with functional outcome (modified Rankin Scale score, 3-6 versus 0-2) and Cox proportional hazard models to assess the association with stroke recurrence (treating mortality as a competing risk) and mortality during a 12-month follow-up, adjusting for sex, age, physical activity, National Institutes of Health Stroke Scale at admission, history of stroke and peripheral artery disease, small artery occlusion, and interleukin-6. Subgroup analyses stratified by age and stroke subtypes were conducted. RESULTS: The Third China National Stroke Registry enrolled 15 166 patients, of which 10 241 with whole-genome sequencing data were retained (mean age, 62.2 [SD, 11.2] years; 68.8% men). The associations between mtDNA-CN and poststroke/transient ischemic attack outcomes were specific to patients aged ≤65 years, with lower mtDNA-CN significantly associated with stroke recurrence in 12 months (subdistribution hazard ratio, 1.15 per SD lower mtDNA-CN [95% CI, 1.04-1.27]; P=5.2×10-3) and higher all-cause mortality in 3 months (hazard ratio, 2.19 [95% CI, 1.41-3.39]; P=5.0×10-4). Across subtypes, the associations of mtDNA-CN with stroke recurrence were specific to stroke of undetermined cause (subdistribution hazard ratio, 1.28 [95% CI, 1.11-1.48]; P=6.6×10-4). In particular, lower mtDNA-CN was associated with poorer functional outcomes in stroke of undetermined cause patients diagnosed with embolic stroke of undetermined source (odds ratio, 1.53 [95% CI, 1.20-1.94]; P=5.4×10-4), which remained significant after excluding patients with recurrent stroke (odds ratio, 1.49 [95% CI, 1.14-1.94]; P=3.0×10-3). CONCLUSIONS: Lower mtDNA-CN is associated with higher stroke recurrence rate and all-cause mortality, as well as poorer functional outcome at follow-up, among stroke of undetermined cause, embolic stroke of undetermined source, and younger patients.

4.
Int Immunopharmacol ; 131: 111888, 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38522139

ABSTRACT

OBJECTIVES: Osteoarthritis (OA) is a whole-joint disease in which the role of the infrapatellar fat pad (IFP) in its pathogenesis is unclear. Our study explored the cellular heterogeneity of IFP to understand OA and identify therapeutic targets. METHODS: Single-cell and single-nuclei RNA sequencing were used to analyze 10 IFP samples, comprising 5 from OA patients and 5 from healthy controls. Analyses included differential gene expression, enrichment, pseudotime trajectory, and cellular communication, along with comparative studies with visceral and subcutaneous fats. Key subcluster and pathways were validated using multiplex immunohistochemistry. RESULTS: The scRNA-seq performed on the IFPs of the OA and control group profiled the gene expressions of over 49,674 cells belonging to 11 major cell types. We discovered that adipose stem and progenitor cells (ASPCs), contributing to the formation of both adipocytes and synovial-lining fibroblasts (SLF). Interstitial inflammatory fibroblasts (iiFBs) were a subcluster of ASPCs that exhibit notable pro-inflammatory and proliferative characteristics. We identified four adipocyte subtypes, with one subtype showing a reduced lipid synthesis ability. Furthermore, iiFBs modulated the activities of macrophages and T cells in the IFP. Compared to subcutaneous and visceral adipose tissues, iiFBs represented a distinctive subpopulation of ASPCs in IFP that regulated cartilage proliferation through the MK pathway. CONCLUSION: This study presents a comprehensive single-cell transcriptomic atlas of IFP, uncovering its complex cellular landscape and potential impact on OA progression. Our findings highlight the role of iiFBs in OA, especially through MK pathway, opening new avenues for understanding OA pathogenesis and developing novel targeted therapies.


Subject(s)
Osteoarthritis, Knee , Humans , Osteoarthritis, Knee/pathology , Adipose Tissue/pathology , Knee Joint/pathology , Gene Expression Profiling , Fibroblasts/metabolism
5.
J Genet Genomics ; 2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38325701

ABSTRACT

Heterosis, also known as hybrid vigor, is commonly observed in rice crosses. The hybridization of rice species or subspecies exhibits robust hybrid vigor, however, the direct harnessing of this vigor is hindered by reproductive isolation. Here, we review recent advances in the understanding of the molecular mechanisms governing reproductive isolation in inter-subspecific and inter-specific hybrids. This review encompasses the genetic model of reproductive isolation within and among Oryza sativa species, emphasizing the essential role of mitochondria in this process. Additionally, we delve into the molecular intricacies governing the interaction between mitochondria and autophagosomes, elucidating their significant contribution to reproductive isolation. Furthermore, our exploration extends to comprehending the evolutionary dynamics of reproductive isolation and speciation in rice. Building on these advances, we offer a forward-looking perspective on how to overcome the challenges of reproductive isolation and facilitate the utilization of heterosis in future hybrid rice breeding endeavors.

6.
Environ Res ; : 118539, 2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38401684

ABSTRACT

The relationship of exposure to benzo [a]pyrene (BaP) with lung cancer risk has been firmly established, but whether this association could be modified by other environmental or genetic factors remains to be explored. To investigate whether and how zinc (Zn) and genetic predisposition modify the association between BaP and lung cancer, we performed a case-cohort study with a 5.4-years median follow-up duration, comprising a representative subcohort of 1399 participants and 359 incident lung cancer. The baseline concentrations of benzo [a]pyrene diol epoxide-albumin adduct (BPDE-Alb) and Zn were quantified. We also genotyped the participants and computed the polygenic risk score (PRS) for lung cancer. Our findings indicated that elevated BPDE-Alb and PRS were linked to increased lung cancer risk, with the HR (95%CI) of 1.54 (1.36, 1.74) per SD increment in ln-transformed BPDE-Alb and 1.27 (1.14, 1.41) per SD increment in PRS, but high plasma Zn level was linked to a lower lung cancer risk [HR (95%CI) per SD increment in ln-transformed Zn = 0.77 (0.66, 0.91)]. There was evidence of effect modification by Zn on BaP-lung cancer association (P for multiplicative interaction = 0.008). As Zn concentrations increased from the lowest to highest tertile, the lung cancer risk per SD increment in ln-transformed BPDE-Alb decreased from 2.07 (1.48, 2.89) to 1.45 (1.03, 2.05) to 1.33 (0.90, 1.95). Additionally, we observed a significant synergistic interaction of BPDE-Alb and PRS [RERI (95%CI) = 0.85 (0.03, 1.67)], with 42% of the incident lung cancer cases among individuals with high BPDE-Alb and high PRS attributable to their additive effect [AP (95%CI) = 0.42 (0.14, 0.69)]. This study provided the first prospective epidemiological evidence that Zn has protective effect against BaP-induced lung tumorigenesis, whereas high genetic risk can enhance the harmful effect of BaP. These findings may provide novel insight into the environment-environment and environment-gene interaction underlying lung cancer development, which may help to develop prevention and intervention strategies to manage BaP-induced lung cancer.

7.
Dalton Trans ; 53(3): 1132-1140, 2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38099852

ABSTRACT

We present a novel approach for the in situ growth of bimetallic silicate onto ultrathin graphene, followed by in situ reduction and phosphorization to obtain uniformly dispersed bimetallic phosphides (rGO@FeNiP/rGO@FeCoP) on graphene layers. Unlike the traditional simple composites of single-metallic phosphides and carbon materials, the bimetallic synergy of rGO@FeNiP/rGO@FeCoP obtained through in situ growth, reduction, phosphorization, and alkaline treatment exhibits a large surface area, more nanopores and defects, and more active sites, facilitates electrolyte diffusion and gas release, accelerates electron transfer and enhances electrocatalytic oxygen evolution reaction (OER) performance. Furthermore, the continuous carbon layer architecture surrounding FeNiP/FeCoP provides structural support, improving catalyst stability. We have investigated the effect of different proportions of bimetals on electrocatalytic performance, providing a rational design and synthesis strategy for carbon-based bimetallic phosphides as a promising electrocatalyst for the OER.

8.
J Hazard Mater ; 465: 133200, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38113735

ABSTRACT

Humans were exposed to multiple metals, but the impact of metals on DNA methylation-age (DNAm-age), a well-recognized aging measure, remains inconclusive. This study included 2942 participants from the Dongfeng-Tongji cohort. We detected their plasma concentrations of 23 metals and determined their genome-wide DNA methylation using the Illumina Human-MethylationEPIC BeadChip. Five DNAm-age acceleration indexes (DAIs), including HannumAge-Accel, HorvathAge-Accel, PhenoAge-Accel, GrimAge-Accel (residual from regressing corresponding DNAm-age on chronological age) and DNAm-mortality score (DNAm-MS), were separately calculated. We found that each 1-unit increase in ln-transformed copper (Cu) was associated with a separate 1.02-, 0.83- and 0.07-unit increase in PhenoAge-Accel, GrimAge-Accel, and DNAm-MS (all FDR<0.05). Each 1-unit increase in ln-transformed nickel (Ni) was associated with a 0.34-year increase in PhenoAge-Accel, while each 1-unit increase in ln-transformed strontium (Sr) was associated with a 0.05-unit increase in DNAm-MS. The Cu, Ni and Sr showed joint positive effects on above three DAIs. PhenoAge-Accel, GrimAge-Accel, and DNAm-MS mediated a separate 6.5%, 12.3%, 6.0% of the positive association between Cu and all-cause mortality; GrimAge-Accel mediated 14.3% of the inverse association of selenium with all-cause mortality. Our findings revealed the effects of Cu, Ni, Sr and their co-exposure on accelerated aging and highlighted mediation roles of DNAm-age on metal-associated mortality.


Subject(s)
Aging , DNA Methylation , Humans , Cohort Studies , Metals , DNA , Nickel , Strontium , Epigenesis, Genetic
9.
Respir Res ; 24(1): 315, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-38102678

ABSTRACT

BACKGROUND: The two-way communications along the gut-lung axis influence the immune function in both gut and lung. However, the shared genetic characteristics of lung function with gastrointestinal tract (GIT) diseases remain to be investigated. METHODS: We first investigated the genetic correlations between three lung function traits and four GIT diseases. Second, we illustrated the genetic overlap by genome-wide pleiotropic analysis (PLACO) and further pinpointed the relevant tissue and cell types by partitioning heritability. Furthermore, we proposed pleiotropic genes as potential drug targets by drug database mining. Finally, we evaluated the causal relationships by epidemiologic observational study and Mendelian randomization (MR) analysis. RESULTS: We found lung function and GIT diseases were genetically correlated. We identified 258 pleiotropic loci, which were enriched in gut- and lung-specific regions marked by H3K4me1. Among these, 16 pleiotropic genes were targets of drugs, such as tofacitinib and baricitinib targeting TYK2 for the treatment of ulcer colitis and COVID-19, respectively. We identified a missense variant in TYK2, exhibiting a shared causal effect on FEV1/FVC and inflammatory bowel disease (rs12720356, PPLACO=1.38 × 10- 8). These findings suggested TYK2 as a promising drug target. Although the epidemiologic observational study suggested the protective role of lung function in the development of GIT diseases, no causalities were found by MR analysis. CONCLUSIONS: Our study suggested the shared genetic characteristics between lung function and GIT diseases. The pleiotropic variants could exert their effects by modulating gene expression marked by histone modifications. Finally, we highlighted the potential of pleiotropic analyses in drug repurposing.


Subject(s)
Gastrointestinal Diseases , Lung , Mendelian Randomization Analysis , Forced Expiratory Volume/genetics , Gastrointestinal Tract , Genome-Wide Association Study , Lung/physiopathology , Phenotype , Polymorphism, Single Nucleotide/genetics , Humans , Gastrointestinal Diseases/genetics , Gastrointestinal Diseases/physiopathology
10.
Nucleic Acids Res ; 51(22): e115, 2023 Dec 11.
Article in English | MEDLINE | ID: mdl-37941153

ABSTRACT

In the analysis of both single-cell RNA sequencing (scRNA-seq) and spatially resolved transcriptomics (SRT) data, classifying cells/spots into cell/domain types is an essential analytic step for many secondary analyses. Most of the existing annotation methods have been developed for scRNA-seq datasets without any consideration of spatial information. Here, we present SpatialAnno, an efficient and accurate annotation method for spatial transcriptomics datasets, with the capability to effectively leverage a large number of non-marker genes as well as 'qualitative' information about marker genes without using a reference dataset. Uniquely, SpatialAnno estimates low-dimensional embeddings for a large number of non-marker genes via a factor model while promoting spatial smoothness among neighboring spots via a Potts model. Using both simulated and four real spatial transcriptomics datasets from the 10x Visium, ST, Slide-seqV1/2, and seqFISH platforms, we showcase the method's improved spatial annotation accuracy, including its robustness to the inclusion of marker genes for irrelevant cell/domain types and to various degrees of marker gene misspecification. SpatialAnno is computationally scalable and applicable to SRT datasets from different platforms. Furthermore, the estimated embeddings for cellular biological effects facilitate many downstream analyses.


Subject(s)
Gene Expression Profiling , Single-Cell Analysis , Software , Gene Expression Profiling/methods , Single-Cell Analysis/methods , Transcriptome
11.
Nat Commun ; 14(1): 7498, 2023 Nov 18.
Article in English | MEDLINE | ID: mdl-37980427

ABSTRACT

Kidney stone disease (KSD) is a complex disorder with high heritability and prevalence. We performed a large genome-wide association study (GWAS) meta-analysis for KSD to date, including 720,199 individuals with 17,969 cases in European population. We identified 44 susceptibility loci, including 28 novel loci. Cell type-specific analysis pinpointed the proximal tubule as the most relevant cells where susceptibility variants might act through a tissue-specific fashion. By integrating kidney-specific omics data, we prioritized 223 genes which strengthened the importance of ion homeostasis, including calcium and magnesium in stone formation, and suggested potential target drugs for the treatment. The genitourinary and digestive diseases showed stronger genetic correlations with KSD. In this study, we generate an atlas of candidate genes, tissue and cell types involved in the formation of KSD. In addition, we provide potential drug targets for KSD treatment and insights into shared regulation with other diseases.


Subject(s)
Genome-Wide Association Study , Kidney Calculi , Humans , Genetic Predisposition to Disease , Kidney Calculi/genetics , Genetic Loci , Polymorphism, Single Nucleotide
13.
Cell Discov ; 9(1): 75, 2023 Jul 21.
Article in English | MEDLINE | ID: mdl-37479695

ABSTRACT

Ischemic stroke is a leading cause of global mortality and long-term disability. However, there is a paucity of whole-genome sequencing studies on ischemic stroke, resulting in limited knowledge of the interplay between genomic and phenotypic variations among affected patients. Here, we outline the STROMICS design and present the first whole-genome analysis on ischemic stroke by deeply sequencing and analyzing 10,241 stroke patients from China. We identified 135.59 million variants, > 42% of which were novel. Notable disparities in allele frequency were observed between Chinese and other populations for 89 variants associated with stroke risk and 10 variants linked to response to stroke medications. We investigated the population structure of the participants, generating a map of genetic selection consisting of 31 adaptive signals. The adaption of the MTHFR rs1801133-G allele, which links to genetically evaluated VB9 (folate acid) in southern Chinese patients, suggests a gene-specific folate supplement strategy. Through genome-wide association analysis of 18 stroke-related traits, we discovered 10 novel genetic-phenotypic associations and extensive cross-trait pleiotropy at 6 lipid-trait loci of therapeutic relevance. Additionally, we found that the set of loss-of-function and cysteine-altering variants present in the causal gene NOTCH3 for the autosomal dominant stroke disorder CADASIL displayed a broad neuro-imaging spectrum. These findings deepen our understanding of the relationship between the population and individual genetic layout and clinical phenotype among stroke patients, and provide a foundation for future efforts to utilize human genetic knowledge to investigate mechanisms underlying ischemic stroke outcomes, discover novel therapeutic targets, and advance precision medicine.

14.
Cell ; 186(17): 3577-3592.e18, 2023 08 17.
Article in English | MEDLINE | ID: mdl-37499659

ABSTRACT

Hybrid sterility restricts the utilization of superior heterosis of indica-japonica inter-subspecific hybrids. In this study, we report the identification of RHS12, a major locus controlling male gamete sterility in indica-japonica hybrid rice. We show that RHS12 consists of two genes (iORF3/DUYAO and iORF4/JIEYAO) that confer preferential transmission of the RHS12-i type male gamete into the progeny, thereby forming a natural gene drive. DUYAO encodes a mitochondrion-targeted protein that interacts with OsCOX11 to trigger cytotoxicity and cell death, whereas JIEYAO encodes a protein that reroutes DUYAO to the autophagosome for degradation via direct physical interaction, thereby detoxifying DUYAO. Evolutionary trajectory analysis reveals that this system likely formed de novo in the AA genome Oryza clade and contributed to reproductive isolation (RI) between different lineages of rice. Our combined results provide mechanistic insights into the genetic basis of RI as well as insights for strategic designs of hybrid rice breeding.


Subject(s)
Gene Drive Technology , Oryza , Hybridization, Genetic , Oryza/genetics , Plant Breeding/methods , Reproductive Isolation , Plant Infertility
15.
Clin Epigenetics ; 15(1): 115, 2023 07 17.
Article in English | MEDLINE | ID: mdl-37461090

ABSTRACT

BACKGROUND: Although immune cells are involved in acute coronary syndrome (ACS), few studies have explored the association of incident ACS with the relative immune cell proportions. We aimed to investigate the association of immune cell proportions with the incidence and risk factors of ACS in the Dongfeng-Tongji cohort. METHODS: We conducted the analyses with 38,295 subjects from the first follow-up of the Dongfeng-Tongji cohort, including DNA methylation profiles for 1570 individuals. The proportions of immune cell types were observed from routine blood tests or estimated from DNA methylation profiles. For both observed and estimated immune cell proportions, we tested their associations with risk factors of ACS by multivariable linear regression models. In addition, the association of each immune cell proportion with incident ACS was assessed by the Cox regression model and conditional logistic regression model, respectively, adjusting for the risk factors of ACS. FINDINGS: The proportions of lymphocytes, monocytes, and neutrophils showed strong associations with sex, followed by diabetes. Moreover, sex and current smoking were the two factors with strongest association with the proportions of lymphocyte subtypes. The hazard ratio (HR) and 95% confidence interval (CI) of incident ACS per standard deviation (SD) increase in proportions of lymphocytes and neutrophils were 0.91 (0.85-0.96) and 1.10 (1.03-1.16), respectively. Furthermore, the OR (95% CI) of incident ACS per SD increase in proportions of NK cells, CD4+ T cells, and B cells were 0.88 (0.78-0.99), 1.15 (1.03-1.30), and 1.13 (1.00-1.26), respectively. INTERPRETATION: The proportions of immune cells were associated with several risk factors of ACS, including sex, diabetes, and current smoking. In addition, proportion of neutrophils had a risk effect, while proportion of lymphocytes had a protective effect on the incidence of ACS. The protective effect of lymphocytes was probably driven by NK cells.


Subject(s)
Acute Coronary Syndrome , Diabetes Mellitus , Humans , Acute Coronary Syndrome/epidemiology , Incidence , DNA Methylation , Risk Factors , Killer Cells, Natural
17.
J Evid Based Med ; 16(1): 39-49, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36880416

ABSTRACT

AIM: Hepatobiliary and pancreatic (HBP) cancers are among the deadliest malignancies. The objective of the study is to build cost-effective models to identify high-risk individuals for early diagnosis and substantially to reduce the burden of HBP cancers. METHODS: Based on the prospective Dongfeng-Tongji cohort with ∼6 years follow-up, we identified 162 incident cases of hepatocellular carcinoma (HCC), 53 of biliary tract cancer (BTC), and 58 of pancreatic cancer (PC). We matched three controls to each case by age, sex, and hospital. We applied conditional logistic regression to identify predictive clinical variables, from which we constructed clinical risk scores (CRSs). We evaluated the utility of CRSs in stratifying high-risk individuals by 10-fold cross-validation. RESULTS: Among 50 variables we screened, 6 were independent predictors of HCC, with the top ones being hepatitis (OR = 8.51, 95% CI (3.83, 18.9)), plateletcrit (OR = 0.57, 95% CI (0.42, 0.78)), and alanine aminotransferase (OR = 2.06, 95% CI (1.39, 3.06)). Gallstone (OR = 2.70, 95% CI (1.17, 6.24)) and direct bilirubin (OR = 1.58, 95% CI (1.08, 2.31)) were predictive of BTC, while hyperlipidemia (OR = 2.56, 95% CI (1.12, 5.82)) and fasting blood glucose (OR = 2.00, 95% CI (1.26, 3.15)) were predictive of PC. The CRSs achieved AUCs of 0.784 for HCC, 0.648 for BTC, and 0.666 for PC, respectively. When applying to the full cohort with age and sex included as predictors, the AUCs were increased to 0.818, 0.704, and 0.699, respectively. CONCLUSIONS: Disease history and routine clinical variables are predictive of incident HBP cancers in elderly Chinese.


Subject(s)
Biliary Tract Neoplasms , Carcinoma, Hepatocellular , Liver Neoplasms , Pancreatic Neoplasms , Humans , Aged , Carcinoma, Hepatocellular/epidemiology , Liver Neoplasms/epidemiology , Prospective Studies , East Asian People , Risk Factors , Biliary Tract Neoplasms/epidemiology , Biliary Tract Neoplasms/pathology , Pancreatic Neoplasms/epidemiology
18.
Int J Mol Sci ; 24(3)2023 Jan 26.
Article in English | MEDLINE | ID: mdl-36768750

ABSTRACT

Carbon xerogels co-doped with nitrogen (N) and phosphorus (P) or sulfur (S) were synthesized and employed as catalysts for the electrocatalytic reduction of p-nitrophenol (p-NP). The materials were prepared by first synthesizing N-doped carbon xerogels (NDCX) via the pyrolysis of organic gels, and then introducing P or S atoms to the NDCX by a vapor deposition method. The materials were characterized by various measurements including X-ray diffraction, N2 physisorption, Transmission electron microscopy, Fourier Infrared spectrometer, and X-ray photoelectron spectra, which showed that N atoms were successfully doped to the carbon xerogels, and the co-doping of P or S atoms affected the existing status of N atoms. Cyclic voltammetry (CV) scanning manifested that the N and P co-doped materials, i.e., P-NDCX-1.0, was the most suitable catalyst for the reaction, showing an overpotential of -0.569 V (vs. Ag/AgCl) and a peak slop of 695.90 µA/V. The material was also stable in the reaction and only a 14 mV shift in the reduction peak overpotential was observed after running for 100 cycles.


Subject(s)
Carbon , Nitrogen , Phosphorus , Sulfur
19.
Front Med ; 17(4): 747-757, 2023 Aug.
Article in English | MEDLINE | ID: mdl-36738428

ABSTRACT

Emerging SARS-CoV-2 variants have made COVID-19 convalescents susceptible to re-infection and have raised concern about the efficacy of inactivated vaccination in neutralization against emerging variants and antigen-specific B cell response. To this end, a study on a long-term cohort of 208 participants who have recovered from COVID-19 was conducted, and the participants were followed up at 3.3 (Visit 1), 9.2 (Visit 2), and 18.5 (Visit 3) months after SARS-CoV-2 infection. They were classified into three groups (no-vaccination (n = 54), one-dose (n = 62), and two-dose (n = 92) groups) on the basis of the administration of inactivated vaccination. The neutralizing antibody (NAb) titers against the wild-type virus continued to decrease in the no-vaccination group, but they rose significantly in the one-dose and two-dose groups, with the highest NAb titers being observed in the two-dose group at Visit 3. The NAb titers against the Delta variant for the no-vaccination, one-dose, and two-dose groups decreased by 3.3, 1.9, and 2.3 folds relative to the wild-type virus, respectively, and those against the Omicron variant decreased by 7.0, 4.0, and 3.8 folds, respectively. Similarly, the responses of SARS-CoV-2 RBD-specific B cells and memory B cells were boosted by the second vaccine dose. Results showed that the convalescents benefited from the administration of the inactivated vaccine (one or two doses), which enhanced neutralization against highly mutated SARS-CoV-2 variants and memory B cell responses. Two doses of inactivated vaccine among COVID-19 convalescents are therefore recommended for the prevention of the COVID-19 pandemic, and vaccination guidelines and policies need to be updated.

20.
J Med Virol ; 95(1): e28380, 2023 01.
Article in English | MEDLINE | ID: mdl-36478357

ABSTRACT

Children are the high-risk group for COVID-19, and in need of vaccination. However, humoral and cellular immune responses of COVID-19 vaccine remain unclear in vaccinated children. To establish the rational immunization strategy of inactivated COVID-19 vaccine for children, the immunogenicity of either one dose or two doses of the vaccine in children was evaluated. A prospective cohort study of 322 children receiving inactivated COVID-19 vaccine was established in China. The baseline was conducted after 28 days of the first dose, and the follow-up was conducted after 28 days of the second dose. The median titers of receptor binding domain (RBD)-IgG, and neutralizing antibody (NAb) against prototype strain and Omicron variant after the second dose increased significantly compared to those after the first dose (first dose: 70.0, [interquartile range, 30.0-151.0] vs. second dose: 1261.0 [636.0-2060.0] for RBD-IgG; 2.5 [2.5-18.6] vs. 252.0 [138.6-462.1] for NAb against prototype strain; 2.5 [2.5-2.5] vs. 15.0 [7.8-26.5] for NAb against Omicron variant, all p < 0.05). The flow cytometry results showed that the first dose elicited SARS-CoV-2 specific cellular immunity, while the second dose strengthened SARS-CoV-2 specific IL-2+ or TNF-α+  monofunctional, IFN-γ+ TNF-α+  bifunctional, and IFN-γ- IL-2+ TNF-α+ multifunctional CD4+ T cell responses (p < 0.05). Moreover, SARS-CoV-2 specific memory T cells were generated after the first vaccination, including the central memory T cells and effector memory T cells. The present findings provide scientific evidence for the vaccination strategy of the inactive vaccines among children against COVID-19 pandemic.


Subject(s)
COVID-19 Vaccines , COVID-19 , Child , Humans , East Asian People , Interleukin-2 , Pandemics , Prospective Studies , Tumor Necrosis Factor-alpha , COVID-19/prevention & control , SARS-CoV-2 , Vaccination , Immunity, Cellular , Antibodies, Neutralizing , Immunoglobulin G , Antibodies, Viral , Immunity, Humoral
SELECTION OF CITATIONS
SEARCH DETAIL
...